Writing NetCDF4 Data using Python

For how to read a netCDF data, please refer to the previous post. Also, check the package and tools required for writing the netCDF data, check the page for reading the netCDF data.

Importing relevant libraries

import netCDF4 
import numpy as np

Screen Shot 2017-10-03 at 2.20.50 PM.png

Let us create a new empty netCDF file named “new.nc” in the “../../data” directory and open it for writing.

ncfile = netCDF4.Dataset('../../data/new.nc',mode='w',format='NETCDF4_CLASSIC') 
print(ncfile)

Screen Shot 2017-10-03 at 2.30.59 PM.png

Notice here that we have set the mode to be “w”, which means write mode. We can also open the data in append mode (“a”). It is safe to check whether the netCDF file has closed, using the try and except statement.

Creating Dimensions

We can now fill the netCDF files opened with the dimensions, variables, and attributes. First of all, let’s create the dimension.

lat_dim = ncfile.createDimension('lat', 73) # latitude axis
lon_dim = ncfile.createDimension('lon', 144) # longitude axis
time_dim = ncfile.createDimension('time', None) # unlimited axis (can be appended to).
for dim in ncfile.dimensions.items():
 print(dim)

Screen Shot 2017-10-03 at 2.35.59 PM.png

Every dimension has a name and length. If we set the dimension length to be 0 or None, then it takes it as of unlimited size and can grow. Since we are following the netCDF classic format, only one dimension can be unlimited. To make more than one dimension to be unlimited follow the other format. Here, we will constrain to the classic format only as it is the simplest one.

Creating attributes

One of the nice features of netCDF data format is that we can also store the meta-data information along with the data. This information can be stored as attributes.

ncfile.title='My model data'
print(ncfile.title)

Screen Shot 2017-10-03 at 2.43.38 PM.png

ncfile.subtitle="My model data subtitle"
ncfile.anything="write anything"
print(ncfile.subtitle)
print(ncfile)
print(ncfile.anything)

Screen Shot 2017-10-03 at 2.45.55 PM.png

We can add as many attributes as we like.

Creating Variables

Now, let us add some variables to store some data in them. A variable has a name, a type, a shape and some data values. The shape of the variable can be stated using the tuple of the dimension names. The variable should also contain some attributes such as units to describe the data.

lat = ncfile.createVariable('lat', np.float32, ('lat',))
lat.units = 'degrees_north'
lat.long_name = 'latitude'
lon = ncfile.createVariable('lon', np.float32, ('lon',))
lon.units = 'degrees_east'
lon.long_name = 'longitude'
time = ncfile.createVariable('time', np.float64, ('time',))
time.units = 'hours since 1800-01-01'
time.long_name = 'time'
temp = ncfile.createVariable('temp',np.float64,('time','lat','lon')) # note: unlimited dimension is leftmost
temp.units = 'K' # degrees Kelvin
temp.standard_name = 'air_temperature' # this is a CF standard name
print(temp) 

Screen Shot 2017-10-03 at 2.51.29 PM.png

Here, we create the variable using the createVariable method. This method takes 3 arguments: a variable name (string type), data types, a tuple containing the dimension. We have also added some attributes such as for the variable lat, we added the attribute of units and long_name. Also, notice the units of the time variable.

We also have defined the 3-dimensional variable “temp” which is dependent on the other variables time, lat and lon.

In addition to the custom attributes, the netCDF provides some pre-defined attributes as well.

print("-- Some pre-defined attributes for variable temp:")
print("temp.dimensions:", temp.dimensions)
print("temp.shape:", temp.shape)
print("temp.dtype:", temp.dtype)
print("temp.ndim:", temp.ndim) 

Screen Shot 2017-10-03 at 2.57.36 PM

Since no data has been added, the length of the time dimension is 0.

Writing Data

nlats = len(lat_dim); nlons = len(lon_dim); ntimes = 3
lat[:] = -90. + (180./nlats)*np.arange(nlats) # south pole to north pole
lon[:] = (180./nlats)*np.arange(nlons) # Greenwich meridian eastward
data_arr = np.random.uniform(low=280,high=330,size=(ntimes,nlats,nlons))
temp[:,:,:] = data_arr # Appends data along unlimited dimension
print("-- Wrote data, temp.shape is now ", temp.shape)
print("-- Min/Max values:", temp[:,:,:].min(), temp[:,:,:].max())

Screen Shot 2017-10-03 at 3.02.52 PM.png

The length of the lat and lon variable will be equal to its dimension. Since the length of the time variable is unlimited and is subject to grow, we can give it any size. We can treat netCDF array as a numpy array and add data to it. The above statement writes all the data at once, but we can do it iteratively as well.

Now, let’s add another time slice.

data_slice = np.random.uniform(low=280,high=330,size=(nlats,nlons))
temp[3,:,:] = data_slice 
print("-- Wrote more data, temp.shape is now ", temp.shape) 

Screen Shot 2017-10-03 at 3.10.20 PM.png

Note, that we haven’t added any data to the time variable yet.

print(time)
times_arr = time[:]
print(type(times_arr),times_arr) 

Screen Shot 2017-10-03 at 3.12.50 PM.png

The dashes indicate that there is no data available. Also, notice the 4 dashes corresponding to the four levels in of the time stacks.

Now, let us write some data to the time variable using the datetime module of Python and the date2num function of netCDF4.

import datetime as dt
from netCDF4 import date2num,num2date
dates = [dt.datetime(2014,10,1,0),dt.datetime(2014,10,2,0),dt.datetime(2014,10,3,0),dt.datetime(2014,10,4,0)]
print(dates)

Screen Shot 2017-10-03 at 3.17.16 PM.png

times = date2num(dates, time.units)
print(times, time.units) # numeric values

Screen Shot 2017-10-03 at 3.18.53 PM.png

Now, it’s important to close the netCDF file which has been opened previously. This flushes buffers to make sure all the data gets written. It also releases the memory resources used by the netCDF file.

# first print the Dataset object to see what we've got
print(ncfile)
# close the Dataset.
ncfile.close(); print('Dataset is closed!')

Screen Shot 2017-10-03 at 3.23.38 PM.png

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Powered by WordPress.com.

Up ↑

%d bloggers like this: